Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet World ; 16(6): 1301-1311, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37577189

RESUMO

Background and Aim: Antibiotic resistance, especially in Gram-negative bacteria, is a major public health risk affecting all industries requiring the use of antibiotics, including agriculture and animal breeding. This study aimed to use papaya extracts to synthesize silver nanoparticles (AgNPs) and evaluate their antimicrobial activity against various Gram-negative bacteria. Materials and Methods: Silver nanoparticles were synthesized from the aqueous extracts of papaya seed, root, and bark, with AgNO3 used as a reducing agent. The phytofabricated AgNPs were analyzed by ultraviolet-visible absorbance, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and photon cross-correlation spectroscopy (PCCS). The disc-diffusion method was used to perform antibacterial analysis, and the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations were determined. We also investigated the antibiofilm activity of AgNPs and attempted to elucidate the potential mechanism of action on Escherichia coli ATCC 25922. Results: Phytofabrication of AgNPs was successful with papaya root (PR-AgNPs) and papaya seed (PS-AgNPs), but not with papaya bark. Silver nanoparticles using papaya root and PS-AgNPs were both cubic and showed maximum absorbances of 2.6 and 0.3 AUs at 411.6 and 416.8 nm wavelengths and average hydrodynamic diameters X50 of 59.46 ± 7.03 and 66.57 ± 8.89 nm, respectively. The Ag in both AgNPs was confirmed by X-ray fluorescence by a distinctive peak in the spectrum at the silver Kα line of 22.105 keV. Both AgNPs exhibited broad-spectrum antimicrobial and antibiofilm activity against all Gram-negative bacteria, and PR-AgNPs were slightly better than AgNPs-PS. The MIC ranged from 16 µg/mL-128 µg/mL and 16 µg/mL-64 µg/mL, respectively, for PS-AgNPs and PR-AgNPs. The elucidation of the mechanism of action revealed interference with E. coli ATCC 25922 growth kinetics and inhibition of H+-ATPase proton pumps. Conclusion: Papaya seed and root extracts were efficient reducing agents for the biogenic synthesis of AgNPs, with noteworthy antibacterial and antibiofilm activities. Future studies should be conducted to identify the phytochemicals and the mechanism involved in AgNPs synthesis.

2.
Front Biosci (Elite Ed) ; 14(4): 25, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36575849

RESUMO

BACKGROUND AND AIM: Antibiotics' resistance is the leading cause of complications in the treatment of urinary tract infections. This study aimed to screen the antimicrobial potential of 8 plants from Cameroon against multi-resistant uropathogenic (MRU) bacteria and to investigate their antibioresistance reversal properties. METHOD: Bioactive compounds were extracted from leaves of Leucanthemum vulgare, Cymbopogon citratus, Moringa oleifera and Vernonia amygdalina; barks of Cinchona officinalis and Enantia chlorantha barks and seeds of Garcinia lucida and leaves and seeds of Azadirachta indica using water and ethanol as solvents. The extracts were tested against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538 and Candida albicans 10231 using the well diffusion and the broth microdilution methods. The antibiotic-resistance reversal activity was assessed against selected MRU bacteria. The phytochemical composition and the elemental composition of the most active extracts were assessed respectively using HPLC-MS/MS and X-ray fluorescence (XRF) spectrometry. RESULTS: Among the most active plants, in decreasing order of antimicrobial activity we found ethanolic (EE) and aqueous extracts (AE) of E. chloranta bark (ECB), EE of L. vulgare leaves and G. lucida seeds. The best synergies between common antibiotics and extracts were found with EE-ECB which well-modulated kanamycin nitrofurantoin and ampicillin. All the compounds identified in EE-ECB were alkaloids and the major constituents were palmatine (51.63%), columbamine+7,8-dihydro-8-hydroxypalmatine (19.21%), jatrorrhizine (11.02%) and pseudocolumbamine (6.33%). Among the minerals found in EE-ECB (S, Si, Cl, K, Ca, Mn, Fe, Zn and Br), Br, Fe and Cl were the most abundant with mean fluorescence intensities of 4.6529, 3.4854 and 2.5942 cps/uA respectively. CONCLUSIONS: The ethanol extract of the bark of E. chlorantha has remarkable, broad-spectrum antimicrobial and contains several palmatine derivatives.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camarões , Espectrometria de Massas em Tandem , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Etanol
3.
Vet World ; 15(3): 662-671, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35497952

RESUMO

Antibiotics are among the essential veterinary medicine compounds associated with animal feed and food animal production. The use of antibiotics for the treatment of bacterial infections is almost unavoidable, with less need to demonstrate their importance. Although banned as a growth factor for a few years, their use in animals can add residues in foodstuffs, presenting several environmental, technological, animal health, and consumer health risks. With regard to human health risks, antibiotic residues induce and accelerate antibiotic resistance development, promote the transfer of antibiotic-resistant bacteria to humans, cause allergies (penicillin), and induce other severe pathologies, such as cancers (sulfamethazine, oxytetracycline, and furazolidone), anaphylactic shock, nephropathy (gentamicin), bone marrow toxicity, mutagenic effects, and reproductive disorders (chloramphenicol). Antibiotic resistance, which has excessively increased over the years, is one of the adverse consequences of this phenomenon, constituting a severe public health issue, thus requiring the regulation of antibiotics in all areas, including animal breeding. This review discusses the common use of antibiotics in agriculture and antibiotic residues in food/feed. In-depth, we discussed the detection techniques of antibiotic residues, potential consequences on the environment and animal health, the technological transformation processes and impacts on consumer health, and recommendations to mitigate this situation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...